2018年05月31日

中華ウインチを買ってみた


■中華ウインチを入手

 ウインチはさまざまな目的で使われていますが、その中に車載用というものがあります。車載用ウインチには、動力源がPTO(ギヤボックス経由のエンジン出力)、油圧、電動のものがあります。その中で、レジャーや簡易使用の分野で広く使われているのが電動ウインチです。クロカン系4WDや作業用車両、ボートトレーラーなどに使われます。
 もともと車載の電動ウインチはアメリカ製が主流で、国産ではアイシン製などがメーカーオプションに使われていましたが、最近は通販サイトを中心に、中国製のものが広く販売されています。値段は米国メーカー製の数分の1から1/10程度です。
 どんなもんだろうと思って、小型のものを1つ新品で買ってみました。能力は1300kg(3000ポンド)、ワイヤーは4.8mm、長さは12mです。フック、ベースプレートとローラーフェアリード、スイッチが2個ついたコントローラがセットになっています。これを7500円ほどで入手しました。


  パッケージの内容

01-package.JPG

  ウインチ本体

02-winch.JPG

  フックとローラーフェアリード

03-fairlead.JPG

  コントローラー

04-controller.JPG


■消費電力

 この種のウインチは車両用なので、DC12Vで動作します(数は少ないですが、ディーゼル車用の24Vモデルもあります)。
 車載電動ウインチの大きな問題の1つは、この電源電圧の低さです。ウインチは牽引力相応のモーター出力が必要で、だいたい1馬力ないし数馬力、つまり0.75kWないし数キロワットの出力のモーターが必要です。例えば1kWのモーターを12Vで駆動する場合、効率が100%でも83Aの電流になります。なので実際には100A超の電流が流れることになり、これはおおよそスターターモーターと同程度です。スターターは数秒程度しか使いませんが、ウインチは数分程度の連続使用になります。
 今回購入したものは自称モーター出力1kWで、最大牽引時に130Aとなっています。
 より大型の3000kg以上のウインチだと3馬力程度のモーターなので、最大電流は400Aを超えます。車載のオルタネーターの余力は、普通車だとせいぜい100A程度なので、これを超える分はバッテリーからの持ち出しになります。なので、ウインチをまともに使おうと思ったら、大容量バッテリーは必須です。それでも大負荷だと数分で使用限界に達してしまい、再充電の時間が必要になります。つまり作業用などの連続使用は無理ということです。


■ぱっと見た感じ

 このクラスの製品は何種類かあり、牽引能力によってモーター出力が違うようです。しかしドラム回りの構造部材などが大きく違うようには見えません。ウインチの構成は、モーターと一体になったギヤボックスにドラムを取り付け、そのギヤボックスにL字の鉄板をネジ止めし、ドラムの反対側がその板に取り付けられた軸受で支えられます。またギヤボックスと軸受のそばに2本のステーを渡して、ドラム軸受の強度を確保しています。

  ドラムと軸受

05-drum.JPG


 しかしこの鉄板はさほど厚くなく、取り付けネジも細いし、軸受も貧弱です。これらの部材が1tを超える荷重に耐えられるようには見えません。まぁワイヤーも細いし、電線もちょっとなぁという感じです。というわけで、実用牽引力はせいぜい300kgから500kgかなと思っています。


■モーター

 前に触れたようにDC12V、出力1kWです。この出力の割には、直巻ではなくマグネットモーターです。永久磁石界磁なので、接続する電線は回転子用の2本だけで、これの極性を切り替えれば反転します。
 とりあえず仮組して運転したところ、無負荷で6A程度でした。説明書では無負荷で12Aなっていたので、それよりは少ないです。ちなみに直巻だと、無負荷でも本当に10A以上流れます。
 ブラシ側ははめ込みが硬かったので外していません。


  モーター全体

06-motor1.JPG

  モーターの内部

07-motor2.JPG


■コントローラー

 より大出力なウインチは、数百アンペアの電流を開閉するために、リレーボックスを使っていますが、このクラスはスイッチで直接開閉します。コントローラーからは、バッテリーに接続する2本、ウインチに接続する2本で、4本の電線が出ています。
 どちらの電線も赤と黒のペアですが、長さが違うので区別できます。どっちがバッテリーでどっちがウインチという区別はありません。しかしペアでないほうの線をバッテリーにつないでしまうと、スイッチ操作でショートしてしまいます。色を変えておくとか、ラベルつけとくとかすればいいんですけどね。電線の末端は丸型圧着端子で、モーターの端子、バッテリーの適当なターミナルにネジ止めします。
 電線の長さが短いので、手元で操作する感じになります。車載で使うには、配線を延長することになるでしょう。

  08-switch.JPG


 使用されているスイッチは防水タイプ(たぶん)のプッシュ式で、内部に常開、常閉の2組の接点があり、2個のスイッチを適当に配線することで、モーター停止、正転、逆転ができます。
 使用されているスイッチは防水タイプ(たぶん)のプッシュ式で、2つのスイッチが1つのパッケージにまとめられたものです。それぞれのスイッチは双極単投タイプ、つまり押した時にオンになる接点を2組持っています。回路は以下のようになっています。

08-sw.jpg


 単純にこのような回路を組んだ場合、両方のスイッチを押すとバッテリーがショートしてしまいます。テスターで導通を調べたところ、このスイッチは、両方のスイッチを同時に押した場合は、どの接点もつながらないインターロック機構を内蔵しているようです。インターロックといっても、同時にボタンが押せないというものではなく、ボタンは押せるものの接点は接触しないという形です。
 これにより、スイッチを1つだけを押せば巻取りか繰り出しが行われ、両方を押すと動作しません。

■ドラム

 ドラムに、5mm弱のワイヤーを12m巻き取ります。ドラム径が小さく、ワイヤーは弾性があるので、無負荷時にビローンと広がってしまいます。これを防ぐために、ドラムにワイヤーを押さえつける鉄板のプレートが装備されており、ケーブルの繰り出しや巻き込みに抵抗を与え、ケーブルが暴れないようにしています。乱巻き防止にもちょっとは役立つかもしれません。


  ワイヤー押さえ

09-plate.JPG


 モーターの反対側のドラム端にはノブがついており、これを引っ張ってちょっとひねると、ドラム駆動軸がギヤから切り離され、ドラムが自由に回転するようになります。ギヤとの噛合によっては外れにくいこともあり、その場合はドラムをちょっと回すようにしてやると外れます。
 この状態ではケーブルを自由に引き出せるはずなのですが、実際にはワイヤーの弾性とかワイヤー押さえの鉄板との絡みなどで、簡単にはいきません。勢いよく引っ張り出そうとすると収拾がつかなくなります。ワイヤーが中でたるまないように、ゆっくり引き出す必要があります。
 ロックする際は、ノブ軸に刺されたピンがドラム側の溝にはまる位置までノブを回します。するとノブ軸が引っ込み、ドラム軸がギヤに噛み合います。


  結合状態

10-clutch1.JPG


  フリー状態

11-clutch2.JPG


■ギヤボックス

 試運転したところ、ギヤノイズが凄まじかったため、ばらして給脂しました。
 裏側のネジとステーのネジを外すと、モーターとL字の鉄板、ドラムが外れます。ノブを回して取り外し、ワイヤー押さえ鉄板を外せば、ドラムとL字鉄板も外せます。ドラム軸受にはかすかな油分しかありませんでした。これで1tの荷重に耐えるって、無理でしょ。。

  プレートを取り外した状態

12-desasm1.JPG


  ドラムを取り外した状態

13-disasm2.JPG


 ギヤボックスのネジとステーを外すと、ギヤボックス側の軸受プレートが外れて、内部のギヤが見えます。とはいっても、この時点ではお鍋の底のようなものが見えるだけ。中心にドラム軸が噛み合う穴が見えます。これを外すと、裏側に遊星ギヤ用の内歯車があります。その下にあるのは遊星歯車を3セット持つプラネタリキャリアです。これに申し訳程度のグリスがついていましたが、肝心の歯の部分にはほとんどわまっていませんでした。うるさいわけです。

  ギヤボックス内部の潤滑状態

14-disasm3.JPG


 遊星歯車は、ギヤボックスの内側にある固定内歯車に噛み合い、そして中心にはモーター軸に直接刻まれた太陽歯車があります。遊星キャリアは遊星歯車を支えるだけで、出力用の軸やギヤは備えられていません。固定内歯車の歯幅は遊星歯車の歯幅の半分で、遊星歯車の残り半分の歯幅は、ここにかぶせる出力用の内歯車に噛み合います。
 太陽歯車が回す遊星歯車が、固定内歯車と出力内歯車に噛み合っていて、遊星キャリアはどこにもつながっていないというこの歯車は、不思議遊星歯車減速機構というもので、1段で100以上の減速比が実現できるという特長があります。このウインチでは、太陽歯車が6T、遊星歯車が22T、固定内歯車が48T、出力内歯車が61Tで、減速比は153になります。


  各部品を洗浄

15-gears.JPG


  モーター軸の太陽歯車と固定内歯車

16-gears2.JPG


  遊星歯車とキャリア

17-gears3.JPG


  出力側内歯車

18-gears4.JPG


  固定内歯車と遊星歯車

19-gears5.JPG


  出力側内歯車

20-gears6.JPG


  組み合わせた状態

21-gears7.JPG


 実際に回転している様子を示します。無潤滑での動作は電源電圧5V、グリース潤滑されている状態は3V程度です。

  遊星歯車の回転




  出力側内歯車の回転




  グリスまみれでの回転




 不思議遊星歯車の固定内歯車と出力内歯車はピッチ円直径が同じなのに歯数が異なるので、実際には転位歯車という構造にしなければいけないのですが、これはそうなっていないようです。このギヤボックスがうるさいのは、そのへんにも理由があるかもです。
 不思議遊星歯車の構造については、以前投稿した動画があるので、それを見てください。


https://www.youtube.com/watch?v=ttfPo773HEU




http://www.nicovideo.jp/watch/sm12579213



■整備

 ほぼ無潤滑運転で凄まじくうるさいという状態をどうにかするために、グリースを給脂して組み立てました。静粛というほどではありませんが、まぁ許容範囲内のノイズに収まりました。


■使用形態

 このウインチは車載用として買ったのではなく(車にはちゃんとした3600kgの電動ウインチがついてる)、なんとなく買ったものです。差し当たって、ワイヤーなどにつないで使うポータブルウインチとして組み立てます。
 ウインチ本体、ローラーフェアリードを取り付けるベースプレートには4つのネジ穴があるのですが、ワイヤーとつなぐための構造にはなっていません。そこで鉄アングル材を使ってアイボルトを取り付けます。アイボルトにシャックルをはめれば、ワイヤーやスリング、フックをつなぐことができます。

  アングル材

22-plate.JPG


  アイボルト

23-ibolt.JPG


  出来上がり

24-mount.JPG

25-winch.JPG

26-wire.JPG


■電源

 無負荷なら数アンペアで動作しますが、実際に負荷をかけたら数十アンペアないし100Aくらい(ウインチが持つかどうかは別にして)になるでしょう。今回は、車用のバッテリーを使います。以前車に使っていたお下がりで、135Dというものです。まぁ乗用車に積むものとしてはほぼ最大級の容量のものです。古いものなので、実際にどれだけの容量が残っているかは謎ですが。
 バッテリーの端子に、ネジ止めタイプの端子をはめ、それにウインチコントローラへの配線の圧着端子をネジ止めします。本当は安全のために100A程度のヒュージブルリンクを入れるべきですが、それは今後考えます。


■実際の能力

 実際の牽引能力や耐久性は、まだ確かめてないのでわかりません。



posted by masa at 19:21| Comment(0) | TrackBack(0) | 電気機械

2017年10月15日

オルタネーターで遊ぶ その4

 前回、三相交流を整流してみたので、今回はレギュレーターを組み込んで直流出力を安定化してみます。


■普通のオルタネーターとして動かす

 オルタネーター1号は、実際に運転できる環境を作る前に分解し、配線を引き出してしまったので、普通のオルタネーターとしては動かしていません。今回、オルタネーター2号を入手したので、まずは何も手を加えず、普通の自動車用オルタネーターと同じ構成で運転してみました。
 電源として12Vシールド鉛バッテリーを接続し、オルタネーターを動かします。回路は以下のようになっています。

NormalAlt.jpg

 ボディアース(マイナス)とB(バッテリー)端子にバッテリーを接続します。この状態では、オルタネーターには電流は流れません。バッテリーの開放電圧は12.8V程度なので、回路の電圧も同じになります。
 ここでIG(制御端子)に+12Vを接続すると、200mAほどの電流がIG端子に流れます。これが停止状態での回転子の励磁電流となります。同時に、+12VのIG端子からL(チャージランプ)端子に接続したLEDに電流が流れ、点灯します。
 この状態でモーターを起動し、オルタネーターを回転させると発電が開始され、B端子に出力電圧が発生します。
 発電開始とともにL端子のトランジスタがOffになり、チャージランプは消灯します。チャージランプはオルタネーターが発電していないことを警告するものなので、IGがOnで停止時に点灯し、発電開始により消灯するという動作になります。
 発電電圧は、無負荷状態で約15Vでした。電圧を調整するのは、内蔵しているレギュレーターの働きです。この電圧はバッテリー端子電圧より高いので、オルタネーターからバッテリーに電流が流れ、充電が始まります。そして実際の自動車であれば、各部に電力を供給することになります。またこの状態では、回転子の励磁電流もオルタネーター自身が供給します。そのためバッテリーの端子を外しても、オルタネーターは発電を続けることができます。
 これが自動車などに搭載されたオルタネーターの標準的な動作です。

■レギュレーターを壊す

 オルタネーター1号のレギュレーターからの配線をすべて引き出した状態で実験をしていたところ、オルタネーターから電源に電流が逆流したのか、実験電源が壊れました。その際、電源の出力が30Vくらいに上昇し、どうもレギュレーターを道連れにしたようです。以後、IG端子への電圧印加で発電は開始するものの、電圧調整機能は正常に動作しなくなってしまいました。
 オルタネーター2号を導入したのはほかの実験のためだったのですが、1号レギュレーターが壊れてしまったため、レギュレーターの実験は2号のものを使うことにしました。


■オルタネーター2号の分解

 オルタネーター2号も、1号と同等の形式のもの(だと思って)購入したのですが、実際にいじってみると、メーカーや形状はほとんど同じであったものの、細部がいろいろ変わっていました。出力が45Aから50Aになっていたのですが、内部も一部変わっていました。最初につまづいたのがプーリーナットです。1号は22mmだったのに2号は24mmとなっていました。また電機子出力は、三相Y接続の3線ではなく、中性線が最初から引き出された三相4線式で、レクチファイヤの整流方式がちょっと変わっていました。

rect-05.jpg

 1号のレクチファイヤは、三相交流の3本の出力を6個のダイオードで全波整流していましたが、2号のレクチファイヤは中性線にも2個のダイオードを接続し、合計8個のダイオードで整流しています。オルタネーターではこのような構成の整流回路もしばしば使われているようです。
 実はオルタネーター2号は泥だらけで、電線のハンダ外しに手こずりました。その結果、熱でレクチファイヤの絶縁体を破損してしまい、2号レクチファイヤはボツとなりました。残念ながら、この方式の全波整流の実験はできませんでした。
 2号はほかにもレギュレーターとスリップリング回りの配線が変わっており、レギュレーターからの配線とスリップリングへの接続を簡単に切り離すことができませんでした。そこでここは切り離さないまま、電線だけを引き出しました。レギュレーターの構成そのものは、1号のものと同等のようです。
 また実験とは関係ありませんが、泥水のせいか、プーリー側ベアリングは回転がなかり重くなっていたため、新品と交換しました。

AltNo2.JPG


■レギュレーターの実験

 こういった事情により、レギュレーター以外のオルタネーター1号と2号のレギュレーターを組み合わせるという、変則的な構成で実験することにしました。

alt1-2.JPG

 自動車用として使う場合は、レギュレーターで出力電圧を調整します。レギュレーターの構成は製品によって異なり、また最近は燃費向上のために細かな制御が行われているので、ここで説明するものより複雑になっています。
 オルタネーターの交流出力をレクチファイヤで整流すると直流が得られますが、これは安定化されていません。回転が上がると電圧が上昇し、負荷が増えれば電圧が低下します。この電圧変動を調整し、出力電圧を一定の範囲に収めるのがレギュレーターの役割です。回路構成や省エネ機能などの違いはあるものの、出力電圧を調整する基本的な仕組み(回転子の励磁電流を調整する)は同じです。
 今回実験に使ったオルタネーターのレギュレーターは、以下の接続があります(レギュレーターICを裏から見たところ)。
(*が付いているのは、オルタネーター内部の接続で、通常は外部に出ていません)

RegPin.jpg

・グラウンド(G)
 直流出力のマイナス側が基準電位になります。レギュレーター部をオルタネーターに組み付けることで、レギュレーターのグラウンド回路がオルタネーターボディに接続されます(レギュレーター側にグラウンド用の配線や端子はありません)。実験回路ではオルタネーターボディの使っていないネジ穴(レクチファイヤ取付ネジ穴)に端子をネジ止めし、ここにグラウンド配線を接続します。

・バッテリー(B)端子
 オルタネーターの主プラス出力で、自動車のバッテリー/電装系に接続される端子です。

・励磁電力端子(Fp)*
 レクチファイヤには、電力出力用の主プラス端子とは別に、回転子励磁のために使う補助プラス端子があります。これをレギュレーター経由で回転子に接続し、励磁電力を供給します。今回の2台はどちらもこの端子を利用していますが、使わないもの(B端子からの電力を使う)もあるようです。これは内部で接続されています。

・励磁出力(F+、F-)*
 スリップリングを介して回転子に送る12Vの励磁電力です。回転子のプラス側(F+)は励磁電力端子に、マイナス側(F-)はレギュレーター内のトランジスタを経てグラウンドに落ちます。この2本の配線は内部で接続されています。

・制御電源(IG)端子(コネクタ)
 ここに12Vを加えるとレギュレーターが動作します。

・チャージランプ(L)端子(コネクタ)
 発電していない時にグラウンドに落ち、チャージランプを点灯させます。

 レギュレーターとレクチファイヤ、オルタネーターの交流発電部分は以下のように接続されます。レギュレーター内部の回路は類推したもので、この通りであると確かめたものではありません。

Reg-06.jpg


■停止状態

 バッテリーは、レギュレーター/レクチファイヤのB端子とグラウンドに接続されます。IG端子はスイッチで12VがOn/Offされます。Offの状態ではレギュレーターは動作せず、電流も流れません。レクチファイヤも内部にダイオードがあるので、バッテリーからオルタネーターには電流は流れません。
 この状態でIG端子に12Vをかけると、IG−Fp(励磁電力)端子の間のダイオードを通り、F+を通して回転子に電圧がかかります。この状態で、F-(回転子マイナス)−グラウンド間のトランジスタが導通すると、回転子に電流が流れます。つまり、トランジスタの制御により、回転子の励磁電流を調整できるということです。
 IG端子からの12VはFp端子にもかかりますが、レクチファイヤの整流ダイオードにより、電流はレクチファイヤ側には流れません。
 またIG端子に12Vがかかっている間、レギュレーターは出力電圧を監視しており、発電していないと判断すると、L(ランプ)端子をトランジスタを介してグラウンドに落とします。したがって、+12Vからチャージランプをこの端子に接続しておくと点灯します。出力電圧が規定値以上になるとトランジスタがOffになり、ランプは消灯します。

Reg-07.jpg

 回転子の直流抵抗は数オーム程度なので、12Vをかけると3Aから5Aくらい流れることになりますが、実際に測ってみると、そんなに電流は流れていません。テスターで測ると、停止時のIG端子電流は200mAほどでした。
 停止状態では回転子に1.6Vほどの電圧がかかっており、後述するスイッチング動作は行われていません。レギュレーター内部の構成はわかりませんが、電流制限抵抗(この場合だと50Ωほど)がはいっていると考えられます。


■回転状態

 IG端子に12Vを加えた状態でオルタネーターを回転させます。回転子には励磁電流が流れているので、電機子コイルに起電力が発生します。起電力はおおよそ励磁電流と回転数に比例するので、ある程度以上の回転数になれば、規定以上の電圧が得られます。
 発生した交流は、レクチファイヤで整流されます。レクチファイヤのFp(励磁電力)出力電圧が上昇すると、励磁回路にはレクチファイヤからの電流が流れるようになります。Fp−IG端子間にはダイオードがあるため、Fp電圧がIG電圧より高くなっても、この電力はIG端子側には逆流しません。この状態になると、IG端子に流れる電流は数ミリアンペアに減少します(わずかに流れる電流は、内部動作のためのものでしょう)。
 レクチファイヤのB(バッテリ)端子の電圧もバッテリー電圧以上になり、オルタネーターの電力で、バッテリーへの充電、そして自動車であれば、周辺回路への電力供給が始まります。
 オルタネーターの回転数が上がると、内部の交流発電機の出力電圧は高くなりますが、レギュレーターの働きにより、一定以上の電圧には上昇しません。負荷の増大により電圧降下が起きた場合も、レギュレーターの働きにより出力電圧が調整され、なるべく一定の電圧を維持するように動作します。

Reg-08.jpg

 次回は、レギュレーターのさらなる詳細や、電圧制御の仕組みなどを見ていきます。



posted by masa at 12:31| 電気機械

2017年10月01日

オルタネーターで遊ぶ その3

 前回、交流出力ができたので、今回はこれを整流し、直流出力を見てみます。

■レクチファイヤを使って直流出力

 今回使ったオルタネーターのレクチファイヤの回路は図のようになっています(前の説明には間違いがありました)。

rect-02.jpg

 三相交流の3本の出力線(R、S、T、中性線は未使用)をレクチファイヤに接続すると、三相全波整流されます。
 回路を見ると、直流のマイナス出力はひとつですが、プラス出力が2系統あるのがわかります。上側のプラス出力(コンデンサがつながっている方)が発電機出力で、バッテリーや車両の電装系に接続されます。もう1組の補助プラス出力(コンデンサがつながっていない方)は、オルタネーター内部で使用します。
 放熱器は2個に分かれていて、それぞれに3個の大きいダイオードが取り付けられています。それぞれの放熱器は、直流出力回路の一部になっています。2個の放熱器は絶縁されており、−側はオルタネーターボディにネジ止めされています。今回は外付けなので、放熱器に端子をネジ止めしています。プラス側はオルタネーターのプラス極ボルト(B端子)と、内部のレギュレーターに接続する端子になっています。−極とB端子側のプラス極の間にはコンデンサが接続されています。
 補助プラス出力用のダイオードは主ダイオードより小型のもので、放熱器を使わず、放熱器の間で空中配線されています(交流入力電線の横の黒い円筒部品)。

rect-04.JPG

 中央の赤白黒の3本は交流入力。これらの線の横の黒っぽい円筒は補助プラス出力用のダイオード。外側の端子に接続されているのは、赤が主プラス出力、白が補助プラス出力。

rect-03.JPG

 マイナス出力は端子の形では用意されていないので、マイナス側放熱器に電線(黒)をネジ止めして引き出しています。

 レクチファイヤの交流入力に三相交流を接続すると、出力端子に2系統の直流が出力されます。三相全波整流回路が2組組み込まれた形ですが、−側は共用されているという変則的な整流回路です。
 三相全波整流では、整流出力は三相交流の頭の部分をつないだ波のような形になります。補助プラス出力は整流してそのままの出力なので、波のある波形になります。わかりやすいように、波形の表示位置を少し上にあげていますが、実際にはほとんど重なる位置になります(ダイオードによる電圧降下が0.5V程度あります)。

ac3-01.jpg

 主プラス出力は、出力側にコンデンサが入っているので、無負荷状態では平滑化され、ほぼきれいな直流になっています。こちらも波形表示位置を少し上にあげています。

ac3-02.png

 交流出力の測定は基準電位として中性線を使いましたが、整流した場合はマイナス出力を基準電位とします(オシロスコープの波形画面は、交流波形と同時に表示するため、直流出力も交流側中性線を基準電位としています)。車の電装系はオルタメーターも含めて車体全体が−極に接続されており(マイナスアース)、使用する電源は+12Vとなります。このように接続するために、オルタネーター内部の交流出力は接地されていません。なお、三相交流の中性線を基準電位とすれば、三相両波整流となり、プラスマイナス出力となります。この場合、オルタネーターボディが電位を持つことになるので、ショートなどに注意する必要があります。

■オルタネーター2号を入手

 思うところあって、ほぼ同形式のオルタネーターをもう1台入手しました。1号よりもちょっときたないですが、これから動作や内部の配線変更などを行っていきます。

alt-no2.JPG

posted by masa at 13:52| 電気機械

2017年09月19日

オルタネーターで遊ぶ その2

 前回分解したオルタネーターを、実験用に組み立てます。

■配線の引き出し

 オルタネーターがエンジンに取り付けられていた時は、直流出力しか必要ないので、ボディアース、ネジ止めのバッテリー端子、そしてコネクタで制御電源とランプ端子が接続されていました。今回は実験のために、必要な別の配線を引き出します。
 まず、オルタネーターを交流同期発電機として動かすための配線を引き出します。電機子コイルのY結線の3本の出力と、未使用だった中性線から配線を引き出します。これで三相4線交流が得られます。この4本の出力はオルタネーターボディには接地されておらず、完全にフローティングになっています。この線は、取り外したレクチファイア用の穴から引き出します。ブラシからの回転子(界磁)用の配線も引き出します。これで外部から励磁電力を送り、回転子を回転させることで、三相交流発電機となります。

・三相4線交流出力(4本)
 Y結線の三相出力と中性線です。

amt4.JPG

・回転子励磁電流(2本)
 回転子を励磁するための直流12Vの配線です。

rot.JPG

alt-schem.jpg

 交流出力は、中性線がN、三相出力がR、S、Tです。回転子はF+とF-です。

 レギュレーターICはブラシホルダーと一体に組み込まれているため、外部に取り出せません。そのため、レギュレーターの配線もオルタネーター内部から引き出します。レギュレーターは物理的にオルタネーター内部に残っていますが、電気的には完全に分離されています。
 レギュレーターの配線については、後で直流発電の実験をする際に説明します。

 これらの配線を接続したら、オルタネーターを組み立てます。


■モーターの準備

 オルタネーターを、インバーター制御の三相誘導モーターで回します。
 モーター軸にVベルト用プーリーを取り付けます。プーリーは汎用品なので、軸穴は自分で加工する必要があります。そのため、9mmの下穴のモーター軸に合わせて11mmに広げ、さらに押ネジ用の穴を加工します。

motor1.JPG

inv.JPG


 モーター側プーリーは3インチタイプで、オルタネーター側のプーリーよりちょっと大きいものです。誘導モーターを120Hzで運転すればたぶん3500 RPMくらいで回るので、オルタネーターは4000 RPM程度でしょうか。実際にエンジンに装着している状態ではもっと高回転になるはずなので、今回の実験では、電圧や出力は低くなるでしょう。


■台座

 適当な木材にモーターとオルタネーターを取り付けます。ベルト駆動なので、張り調整もできるようにしておきます。オルタネーターからの配線は、後でいろいろ実験できるように、端子台に接続します。

bench1.JPG

bench2.JPG

bench3.JPG


■交流の発電

 同期発電機は、磁石である回転子(界磁)を回転させることで、固定子(電機子)側に交流起電力が発生します。回転子に永久磁石を使えば回転させるだけで発電しますが、電磁石の場合は、励磁電流を流す必要があります。
 回転子に励磁電流を流して回転させれば、電機子巻線に交流電圧が発生します。三相4線式で、Yの接続部を中性点とできるので、オシロスコープをつないでちゃんと三相交流の波形を見ることができます。これがデルタ結線だったり、Y結線でも中性線がないと、基準電位にできる中性点がないので、そのままではこの波形を見られません。

ac1.JPG

 実は、励磁電流を流さなくても、わずかな電圧が発生します。回転子は直流励磁なので、鉄心に以前の励磁による残留磁束があり、これによりわずかな電圧が発生するのです。うまくやれば、この電圧を利用して励磁することで徐々に発電電圧が上昇し、外部から電力を供給することなく、発電を開始することもできます。
 実験してみたところ、励磁電流なしで、1Vちょいの起電力が観察できました。下の画像は、1目盛が0.2Vです。やたらノイズが乗っているのは、インバーターに由来するものでしょうか?

osc0A.png

 回転子は抵抗が3-4Ω程度なので、12Vを加えると数アンペアの電流が流れます。実験はとりあえず1A程度(印加電圧は約5V)で実験を行いました。励磁電流が実際にどれくらい流れるのかは、レギュレーターを接続した実験で見てみます。下の波形は1目盛が5Vです。

osc1A.png


 このオルタネーターは、回転子が12極(S-Nペアが6組)、電機子側は36スロットの分布巻きで、発電機1回転につき6サイクルの交流が発生します。
 モーターとオルタネーターのプーリー直径比が約1.25(増速)で、モーターを60Hzで駆動した場合(同期速度1800 RPM)、発電出力は約200Hz(2000 RPM)となります。


posted by masa at 01:05| 電気機械

2017年08月30日

オルタネーターで遊ぶ その1


 ふと、三相同期発電機をいじくりたくなったのです。
 一般人の日常生活で、もっとも身近な三相同期発電機は(というかほとんど唯一の選択肢は)、自動車のオルタネーターでしょう。という訳で、自動車用オルタネーターで遊んでみます。

alt-01.JPG

■自動車のオルタネーター

 自動車用のオルタネーターは、自動車で消費する電力を供給し、さらにバッテリーに充電するために、12Vか24Vの直流電力を発電します。実際には12V(24V)バッテリーに充電するために、14V(28V)程度の出力電圧になります。
 オルタネーターは交流発電機のことですが、自動車用のオルタネーターは直流出力です。これは、オルタネーター内部に整流/出力調整機能を持っているからです。オルタネーターは、ベルトを介してエンジンによって回転し、三相交流電力を発電します。そして三相全波整流器(レクチファイア)によって直流に変換します。
 エンジンの回転数は10倍近い範囲で変動するので、それに応じてオルタネーターの発電電圧も変わりますが、出力電圧が過剰にならないように、レギュレーターによって調整します。これにより、回転数が変わっても出力電圧が一定値を超えることはなく、自動車の電装品とバッテリーに安定した電圧で電力を供給できます。


■実験用オルタネーターを入手

 ネットオークションで適当なオルタネーターを仕入れました。条件はVベルトプーリー駆動であること。今時の車はたいていリブベルトを使っているのですが、プーリー入手がちと面倒そうです。Vベルトならプーリーもベルトも標準部品を簡単に入手できます。
 入手したのは、スズキキャリイ(軽トラ)用の、12V45A出力のものです。レクチファイアとレギュレーターは内蔵されており、電気的には以下の端子があります。

・アース(ボディ)
 マイナス極です。

・バッテリー(B)端子
 ケース背面にネジ止め端子で、オルタネーターの直流出力端子です。バッテリーと電装系の+母線に接続します。ここにはバッテリーによって常時12Vが加わります。

・制御電源(R)端子
 イグニッションキーにより12Vが供給される端子です。この電源によりレギュレーターの制御回路が機能し、オルタネーターのローターに励磁電流が流れます。つまりこの端子に12Vを加えないと、オルタネーターは(たとえ回転していても)発電しないということです。エンジン始動時はこの12Vはバッテリーから供給されますが、始動後は自身が発電した電力が使われます。
 この端子の名称はメーカーによっても変わるようです。

・チャージランプ(L)端子
 チャージランプ端子です。これは、オルタネーターに制御電源が供給されている(イグニッションキーがON)で、発電出力が発生していないときに、警告ランプを点灯させるための端子です。具体的には、発電出力がない時にグラウンドに落ちます。

conn-01.jpg

■分解

 オルタネーターを三相発電機として使うためには、電機子コイルの出力から配線を引き出す必要があります。またレクチファイアは必要ありません。ローターへの励磁電流も、外部から供給できるようにします。ローター用のスリップリング/ブラシ部はレギュレーターと一体になっているので、ブラシの電線だけ切り離し、ビニール線でブラシ配線を引き出します。また実験のために、レギュレーターの各端子への配線も引き出しておきます。
 オルタネーターの分解は、ネットで調べれば手順がいくらでも出てきます。ちょっと難しいのは、最初にプーリーの固定ナットを外すことです。ローターの回転を押さえなければならず、エンジンに取り付けられていればどうにかなりますが、オルタネーター単体だとうまく押さえられません。インパクトレンチを使えば簡単に外せます。

pulley.JPG

 あとはケースのボルトを外し、軸をプラハンマーなどで叩けば、ケースを前後に分解し、ローターを抜き取ることができます。

alt-02.JPG

 電機子コイルからの配線はレクチファイアにハンダ付けされているので、これを外して電機子、レクチファイア/レギュレーターを外します。レクチファイアの直流出力がレギュレーターにハンダ付けされているので、これも外します。スリップリングのブラシもレギュレーターにハンダ付けされているので、外します。

alt-03.JPG

 一般にオルタネーターの分解は、ベアリングやブラシの交換のために行うのですが、今回は、配線を変えるのが目的なので、その辺は手を加えません。


■オルタネーターの内部構成

 オルタネーターは以下の部品で構成されています。

・電機子コイル
 オルタネーターケースの内側の固定巻線で、三相Y結線になっています。この出力をレクチファイアで三相全波整流することで、直流出力を得ています。今回の入手したものは中性線を使わない構成でしたが、3本の巻線を接続している部分を露出させ、中性線を引きだしました。

coil-01.JPG

・ローター(界磁)コイル
 回転するローターは直流で励磁される電磁石です。励磁電力はスリップリングで供給されます。レギュレーターはこの励磁電流を制御することで、オルタネーターの出力を制御します。今回入手したものは、12極ローターです。
 軸端に厚みのあるベアリングがあり、それとローターの間にほぼ同径のスリップリングが2組あります。

slip-01.JPG

・レギュレーター
 R端子に12Vが与えられると動作します。レギュレーターは、ブラシとスリップリングを介してローターコイルに励磁電流を供給します。B端子の電圧が規定以下の場合(回転していない、あるいは回転しているが出力電圧が低い)、レギュレーターはローターコイルに励磁電流を供給します。回転数が上がって電圧が上昇し、規定電圧(約14V)以上になると励磁電流をカットし、電圧上昇を抑えます。ローター電流の断切を高速に繰り返すことで、母線電圧を規定電圧に保ちます。制御は断続的ですが、バッテリーが平滑回路として働き、母線では滑らかな直流となります。
 チャージランプは、R端子に12Vが加えらており、オルタネーターが十分な電圧を発生していない場合に点灯します。つまり回転していないか、出力電圧が下限値以下である時に、トランジスタを介してL端子が接地します。自動車の場合、キーをONにすると点灯し、エンジンが始動し、回転が安定して発電を開始すると消灯することになります。
 写真は、レギュレーターとレクチファイアが接続された状態のものです。ハンダ付けを外せば分離できます。

reg-rect-01.JPG

・レクチファイア
 6個のダイオードで三相全波整流します。+出力はB端子、−出力はケースにアースされます。またこの+出力は、レギュレーターの電圧検知端子(オルタネーター内部の接続)にも送られます。ノイズ防止用に、プラス極とマイナス極の間にコンデンサが接続されています。(間違ってました。今度訂正します。)
 写真では、絶縁用のプラスチック部品が割れてしまっていますが、これを再度組み付けることはないので気にしません。

rect-01.JPG

posted by masa at 18:18| 電気機械

2017年03月26日

三菱のインバータで遊んでみる その4

 今回使っている三菱電機のE-700シリーズは、汎用磁束ベクトル制御とアドバンスト磁束ベクトル制御という2種類のセンサレスベクトル制御がサポートされていますが、アドバンスト制御のほうが高性能で、汎用のほうは過去の製品との互換性のために用意されているようです。ここではアドバンスト制御を使います。ちなみに、出荷時状態はV/F制御になっています。
 ベクトル制御を正確に行うには、さまざまなパラメータが必要になります。なので、実際に使う前にこれらのパラメータを設定する必要があります。パラメータには、使用するモーターの仕様で決まるものと、モーターそのものの電気的な(仕様書などには示されていない)特性値があります。いまどきのインバータは賢いので、電気的な特性値を自動的に求める機能が備わっています。特性値を調べ、設定する機能を「チューニング」といいます。

■アドバンスト磁束ベクトル制御の設定

 ベクトル制御を行う際は、モーターに関するいくつかのパラメータを設定する必要があります(以下の説明には、ベクトル制御専用のパラメータ以外のものも含まれます)。モーターの出力、極数などの情報は、ユーザーが直接指定します。ここでは以下のパラメータを設定します。おもにインバータ出荷時設定からの変更ですが、初期設定のままのものもあります。見出しの後のPnnは、パラメータnnの意味です。
 電流、周波数のパラメータは、単位を示すA、HzのLEDが点灯します。電圧のVは単位表示はありません。これらのパラメータは、小数点も表示されます。

・上限周波数 P1
 インバータが出力する最高周波数、つまり最高回転数の指定になります。ここでは定格周波数の倍の120(出荷時設定値)とします。これはV/F制御でも参照されます。

・下限周波数 P2
 インバータが出力する最低周波数、つまり最低回転数の指定になります。ここでは0(出荷時設定値)とします。これはV/F制御でも参照されます。

・電子サーマル P9
 サーマルはサーマルリレーの略で、電流による発熱で動作する保護機構です。過負荷などによる過電流を検出し、出力を遮断して機器を保護します。一般にサーマルリレーは独立した部品、あるいは開閉器とセットで使われますが、インバータには、電子的に等価な操作を行う機能、つまり過電流が流れた時に出力を遮断する機能が組み込まれています。これが電子サーマルです。初期設定ではインバータの定格に見合った電流値が設定されていますが、定格より小さなモーターを使う場合は、この値を小さくする必要があります。この値は0.01A単位で設定できます。今回使った200Wモーターの定格電流は60Hzで0.98Aです。汎用モーターの場合は、これを1.1倍した値(1.1A)を設定します(詳細はマニュアルを参照)。

・適用モーター P71
 使用するモーターの種類で、三菱の汎用、高効率、定トルク、他社製などがあります(マニュアル参照)。三菱の指定形式以外の場合、後述するオートチューニングが必要になります。今回、日立の汎用モーターを使っているので、他社汎用モーターを意味する3を指定し、後でオフラインチューニングを行います。

・モーター容量 P80
 モーター容量をkW単位で指定します。9999だとV/F制御(モーター容量は関係しない)となります。ベクトル制御の場合は、0.01kW単位でモーター容量を指定します。今回は200Wモーターなので、0.20を設定します。

・モーター極数 P81
 モーターの極数で、2、4、6などがあります。V/F制御の場合は9999にします。極数が多いほど、同じ周波数でも回転数が低くなります。60Hzの場合、2極だと3600RPM弱、4極だと1800RPM弱になります。今回は4極を使うので4を設定します。

・モーター定格電圧 P83
 モーターの定格電圧を0.1V単位で設定します。ここでは200V(出荷時設定値)を指定します。

・モーター定格周波数 P84
 モーターの定格周波数を0.01Hz単位で設定します。ここでは60Hz(出荷時設定値)を指定します。

・速度制御ゲイン P89
 負荷変動により回転数が変化したときの回復動作の応答性のパラメータで、100(%)が標準です。設定は0.1%単位で行います。9999だと指定したモーターのデフォルト値が使われます。この数字が小さいと変化に対する応答がゆっくりになり、大きいと早くなります。値が大きすぎると、状況によっては過負荷になったり、速度の振動が発生することがあります。このパラメータは実際に負荷をかけた運転で調整することにし、ここでは9999(出荷時設定値)としておきます。

・制御方法 P800
 汎用かアドバンストかを指定します。ここではアドバンスト磁束ベクトル制御なので、20を設定します。

 これらのパラメータを設定すると、アドバンスト磁束ベクトル制御モードとなります。つまり、モーター容量(P80)と極数(P81)を設定するとV/Fモードからベクトル制御モードになり、さらにP800で汎用かアドバンストかの制御方法を決めるということです。
 ベクトル制御を選択した場合は、実際に運転する前に、次に説明するオフラインオートチューニングを行う必要があります。

■オフラインオートチューニングの実行

 アドバンスト磁束ベクトル制御では、モーターの巻線の抵抗やインダクタンスなどのパラメータが必要になりますが、これらはインバータが自身で測定し、設定できます。接続されたモーターに適当な電圧を加え、それに対する電流値を測定することで、これらのパラメータを求めます。これをオフラインオートチューニングといいます。
 オフラインチューニングではモーターは回転させず(多少軸が動くことはあるようです)、必要な調査を行うので、モーターを機器に組み込んだ状態でも実施できます。オフラインチューニングにより、P82P90-94P859が自動的に設定されます。あるいは事前に求めておいたこれらのパラメータをインバータに設定することで、個々の機材でのチューニングを省略することもできるようです。
 オフラインチューニングとは別に、通常運転中にパラメータを調べ、最適な状態に自動的に調整するオンラインチューニングという機能もあります。
 オフラインオートチューニングは、以下のように行います。

・オートチューニング P96
 オートチューニングの実行、現在の状態を示します。0はチューニングを実行しない、1はアドバンスト制御のためのチューニングの実行を示します。

 前述のパラメータ設定を行った後、P96に1を設定し、PU運転モードにしてRUNボタンを押します。この時、LED表示を電流や電圧以外にしておくと、進行が数字で表示され、1から3まで進みます。
 途中で停止する場合はSTOP/RESETを押します。チューニングには数秒から数十秒かかります。RUN LEDが点滅したら正常終了で、STOP/RESETを押してチューニングを終了します。これでパラメータが設定されます。終了後にP96の値を変更する必要はありません(変更するとパラメータが無効化されます)。

 これで出荷時のV/F制御からアドバンスト磁束ベクトル制御になったはずですが、無負荷で回転させる実験では違いがわかりません。このモードの違いは、実際に負荷がかかった環境で低速運転や負荷が変動する運転をしないとわからないでしょう。

posted by masa at 18:34| 電気機械

2017年03月20日

三菱のインバータで遊んでみる その3


■インバータの容量と電源

 インバータの容量は0.4kw、0.75kWなどの表記があり、それぞれ、0.4kW、0.75kWの汎用モーターを駆動することができます。モーターの0.4kWなどの表記は、モーターが0.4kWの電力を消費するという意味ではなく、モーター出力が0.4kWという意味です。そのため実際には、これよりちょっと多い電力を消費することになります。
 インバータでモーターを駆動する際は、一時的な過負荷に耐える必要があります。定格出力よりちょっと超えただけで止まってしまったり、回路が破損するようでは使い物になりません。そのため短時間であれば、定格容量よりも大きな出力が可能になっています。もちろんこの状態で連続使用することはできません(保護機能については、パラメータで設定することができます)。
 モーターはコイルで構成される誘導負荷なので、交流電圧に対して電流の位相が遅れるため、力率が悪くなります。その結果、有効な電力に対して消費電流は増えることになります。そしてそれを駆動するインバータも、実際の電力で必要とされる以上の電流を供給することが求められます。このように、実際の有効な消費電力とは関係なく、実際に流れる電流で考えた電源容量(皮相電力)は、W(ワット)ではなくVA(ボルトアンペア)で示します。
 言うまでもないことですが(そして全体に比べればわずかですが)インバータ自身が消費する電力も考える必要があります。
 こういった理由により、インバータが実際にどれだけの規模の電源を必要とするかは、出力容量だけで算出することはできません。実際に必要な電源容量は、カタログや仕様書で調べることができます。今回使っている400W(0.4kW)モデルの場合、1.5kVAの電源容量が必要となっています。つまり100V 15Aの回路が必要ということです。ちなみに、単相100Vで使用できる最大モデル(0.75kW)の場合、2.5kVAとなっています。したがって普通のコンセントで使おうと思ったら、400Wモデルが限界ということになります。0.75kWを使う場合は、厳密には一般的な100Vエアコン用コンセント(20A)でも不足です。可能であれば、単相200Vの回路を用意し、200V用インバータを使ったほうがいいでしょう。
 もちろん、モーターを全負荷で運転しない、力率改善のための対処をするなどすれば、多少は電源容量を減らすこともできます。ただ、だからといって小容量の電源につなぐと、使い方によっては電源回路側での頻繁なトリップや発熱などの問題が発生する可能性があります。

■インバータでモーターを回す

 出荷時設定のインバータでは、次の手順でモーターを回すことができます。

1. PU/EXTボタンを押して、EXT LEDを点灯させます。
2. ダイヤルを回して周波数を指定し、SETボタンを押します。
3. RUNボタンを押すと、モーターが回転を始め、指定周波数まで加速します。
4. 運転中でも、2.の操作で回転速度を変えることができます。
5. STOP/RESETボタンを押すと、モーターが減速し、停止します。

 運転中にSETボタンを押すと、周波数、電流、電圧の順でLED表示が変化します。

 インバータは出力周波数を変えることができますが、同時に出力電圧も変化させることができます。どのように出力電圧を変化させるかで、モーターの運転特性が大きく変わります。

■V/F制御とベクトル制御

 E-700シリーズは、V/F制御とベクトル制御が可能です。ベクトル制御は、さらに汎用磁束ベクトル制御とアドバンスト磁束ベクトル制御というモードが選べます。詳しくは三菱のテクニカルニュース「三菱汎用インバータの各種制御方式」に書いてあります。
 余談ですが、三菱のインバータで単相100Vで使えるのはE-700シリーズとD-700シリーズになります。Dシリーズのほうが安価なのですが、Dシリーズではアドバンストモードがサポートされていません。大トルクの低速回転を使いたいのであれば、Eシリーズのほうがよいでしょう。

■V/F制御

 これはもっとも基本的な制御で、モーターの定格状態(200V、60Hz)で最高電圧の200Vを印加し、これより低い周波数の場合は、周波数が下がるにつれて出力電圧も下げます。周波数を定格よりも高くする場合は、最高電圧のまま、周波数だけを上げていきます(以下の図は前述のテクニカルニュースから引用)。

vf.JPG

 この方式は、低い周波数の時の電圧が低いため、十分な出力が得られなくなります。そのため、ある程オフセットした周波数/電圧特性とします。具体的には、周波数0Hzの時に0Vではなく、ある程度の電圧を出力するという形です。これをトルクブーストといいます。
 V/F制御は低周波時の出力特性がよくないのですが、接続するモーターの詳細情報が必要なく、1つのインバータで複数のモーターを運転できるといったメリットがあります。そのため、極端な低速回転を使わず、負荷変動の少ないファンやポンプなどに使われます。

■ベクトル制御

 ベクトル制御は、モーターの回転状態を認識し、それに対して適切な出力に制御、つまり出力電圧を調整することで、広い周波数帯域でモーターを効率的に運転することができます。
 誘導モーターは、三相交流による回転磁界で回転子を回しますが、回転子の速度は磁界の速度より遅くなります。これをすべりといいます。実際の回転数を認識することでこのすべり量がわかります。すべりが極端に大きい場合、モーターは十分に回転してない、つまりトルクが足りていないことになります。このような時に出力を高めることで、トルクを増大させて回転数を高めることができます。
 出力電流をモニターすることで、インバータはモーターの回転状態を把握することができます。モーターに流れる電流は界磁を励磁し、これにより回転子に誘導電流が流れ、回転します。モーター電流は励磁分とトルク分があり、うまくベクトル演算することで、これらの成分を算出できます。そして流れる電流成分が最適になるように電圧や周波数を制御することで、さまざまな周波数でモーターを効率的に回転させることができます。これがベクトル制御です。

vec.JPG

 モーターの回転を調べる方法として、モーター軸に回転センサーを装備するという方法と、出力電流を観測して回転状態を類推するという方法があります。後者はセンサーが不要なので、一般的な汎用モーターをそのまま使うことができます。これをセンサーレスベクトル制御といいます。センサーを使う方式はコストが余計にかかりますが、より正確な運転制御が可能です。
 ベクトル制御により、さまざまな周波数領域において、出力周波数と電圧を調整することで、モーターをより効率的に運転できます。特に大トルクで低速回転させることが可能になります。

 次回はアドバンスト磁束ベクトル制御の設定など。

posted by masa at 13:08| 電気機械

2017年03月08日

三菱のインバータで遊んでみる その2

■マニュアルを入手

 インバータで遊ぶには、マニュアルが欠かせません。また中古で入手した場合などは、動作モード、パラメータ、制御端子の設定などが初期設定と異なる状態であったり、そもそも操作機能がロックされていたりするので、まずは標準的な状態に戻す必要があり、そのためにもマニュアルは欠かせません。
 三菱電機のインバータは、三菱電機のサイトからPDF形式のマニュアルをダウンロードすることができます。製品を購入すると、紙の基本マニュアルは付属していますが、パラメータ設定などの詳細は含まれていないので、「応用編」というマニュアルをダウンロードする必要があります。

man.JPG

 300ページを超える量ですが、おおよそ項目ごとに分かれているので、必要な機能を探すのは難しくありません。
 ダウンロードするには、ユーザー登録が必要です。

■パネル

 インバータ本体のパネルにはいくつかのスイッチ、ダイヤル、4桁のLEDなどがあります。これらを使って各種パラメータを設定し、基本的な運転操作を行うことができます。
 RJ-45コネクタ(イーサネットと同じコネクタ)を使って、オプションの外部コントロールパネルや設定用コンソールを接続することもできます。またUSBやその他の通信を使い、PCで設定ソフトを動かして設定することもできます。まぁ、素人が遊ぶ程度なら、これらは必要ないでしょう。

panel.JPG

 スイッチは以下のものがあります。

・PU/EXT
 運転モードの切り替えです。PUはインバータのパネルから運転制御を行うモード、EXTは制御信号を使って外部から運転制御を行うモードです。現在のモードを示すLEDがスイッチの上にあります。

・RUN
 モーターの運転開始です。

・STOP/RESET
 モーターの運転停止と、保護機能が動作した時のリセットです。

。MODE
 運転モード、パラメータ設定モード、アラーム履歴のモードが順番に切り替わります。

・SET
 パラメータ設定モードでは、パラメータの値を設定します。運転モードでは、LED表示が周波数、電流、電圧と切り替わります。


 パネルによる操作をロックしたり制限することができます。中古で入手したものなどは、この状態になっている可能性があります。スイッチ類の操作が効かない場合はパネルがロックされており、MODEボタンの長押しで解除できます。


■パラメータ設定

 モードボタンを何回か押して、LEDにP表示が出たら、パラメータ設定状態です。ここでダイヤルを回すとLEDにパラメータ番号が表示されます。目的の番号が表示されている状態でSETを押すと、そのパラメータの現在の設定値が表示されます。ここでダイヤルを回して数値を変更し、SETを押すと、そのパラメータ番号に現在の値が設定されます。


posted by masa at 11:59| 電気機械

2017年02月26日

三菱のインバータで遊んでみる その1

 フライス盤の主軸モーターを三相の汎用モーターにしたいので、まずはインバータの実験です。

 汎用モーターは三相200Vで動作しますが、これには動力契約が必要です。そのままでは回転数制御もできません。しかしインバータを使えば、三相200Vがなくても、単相100V、単相200Vから三相200Vに変換することができ、さらに周波数を変えて回転数を制御することができます。というか、インバータ本来の機能は、周波数を変えて回転数を変えることなんですけどね。ご家庭で遊ぶには、単相で動かせるというのは大きなメリットです。

 今回は、三菱電機のFREQROL E700シリーズのFR-E710W-0.4Kという単相100V入力、出力が三相200V 400Wのインバータと、200Wの日立モートルを使っています。

Inv_and_motor.JPG

 インバータは、入力された単相、三相の100V、200Vを内部でまず直流にし、それをパワーデバイスを使って制御し、三相交流を出力します。この際、タイミングの制御により出力周波数を、PWM変調により実効電圧を変えることができます。これが鉄ちゃんにはおなじみのVVVF(Variable Voltage Variable Frequency)というやつです。

 さて、中を見てみます。ところで、通電中のインバータは内部に200V以上の高圧部分があり、電源を切った直後でも残留電圧があります。真空管回路ならびっくりで済む電圧ですが、動力回路の場合はびっくりでは済まない場合が多いので、気を付けましょう。作業は自己責任でね。こっちに文句は言わないように。

inv0.JPG

 中はこうなってます。右側がパワー回路部ですが、肝心のパワーデバイスは基板の下の放熱器に取り付けられているので見えません。左側のボックスの内部には、マイコンを中心とした制御回路部があります。

inv1.JPG

inv2.JPG

 パワー回路側の下部には、AC入力と三相出力のための端子台があります。制御側には、モーターを制御するための配線用の端子台があります。

inv3.JPG

inv4.JPG

 配線した後、カバーを取り付けると、充電部はすべて覆われます。

 裏側はすべて放熱器になっています。ここにオプションのDINレール取り付けアタッチメントを付けると、ワンタッチでDINレールに取り付けることができます。

inv5.JPG

 インバータはさまざまなパラメータを設定できますが、とりあえず出荷時状態で、スイッチ操作でモーターを回すことができます。簡単な操作で周波数も変えられるので、モーターの回転数を変えてみる実験などができます。

inv7.JPG

inv6.JPG

 LED表示は、周波数、電圧、電流の表示を切り替えることができます。外部制御のための接続とか、パラメータの設定とかはまた今度。

posted by masa at 16:25| 電気機械